Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
3.
Lancet Psychiatry ; 8(7): 579-588, 2021 07.
Article in English | MEDLINE | ID: covidwho-1683800

ABSTRACT

BACKGROUND: The COVID-19 pandemic is having profound mental health consequences for many people. Concerns have been expressed that, at their most extreme, these consequences could manifest as increased suicide rates. We aimed to assess the early effect of the COVID-19 pandemic on suicide rates around the world. METHODS: We sourced real-time suicide data from countries or areas within countries through a systematic internet search and recourse to our networks and the published literature. Between Sept 1 and Nov 1, 2020, we searched the official websites of these countries' ministries of health, police agencies, and government-run statistics agencies or equivalents, using the translated search terms "suicide" and "cause of death", before broadening the search in an attempt to identify data through other public sources. Data were included from a given country or area if they came from an official government source and were available at a monthly level from at least Jan 1, 2019, to July 31, 2020. Our internet searches were restricted to countries with more than 3 million residents for pragmatic reasons, but we relaxed this rule for countries identified through the literature and our networks. Areas within countries could also be included with populations of less than 3 million. We used an interrupted time-series analysis to model the trend in monthly suicides before COVID-19 (from at least Jan 1, 2019, to March 31, 2020) in each country or area within a country, comparing the expected number of suicides derived from the model with the observed number of suicides in the early months of the pandemic (from April 1 to July 31, 2020, in the primary analysis). FINDINGS: We sourced data from 21 countries (16 high-income and five upper-middle-income countries), including whole-country data in ten countries and data for various areas in 11 countries). Rate ratios (RRs) and 95% CIs based on the observed versus expected numbers of suicides showed no evidence of a significant increase in risk of suicide since the pandemic began in any country or area. There was statistical evidence of a decrease in suicide compared with the expected number in 12 countries or areas: New South Wales, Australia (RR 0·81 [95% CI 0·72-0·91]); Alberta, Canada (0·80 [0·68-0·93]); British Columbia, Canada (0·76 [0·66-0·87]); Chile (0·85 [0·78-0·94]); Leipzig, Germany (0·49 [0·32-0·74]); Japan (0·94 [0·91-0·96]); New Zealand (0·79 [0·68-0·91]); South Korea (0·94 [0·92-0·97]); California, USA (0·90 [0·85-0·95]); Illinois (Cook County), USA (0·79 [0·67-0·93]); Texas (four counties), USA (0·82 [0·68-0·98]); and Ecuador (0·74 [0·67-0·82]). INTERPRETATION: This is the first study to examine suicides occurring in the context of the COVID-19 pandemic in multiple countries. In high-income and upper-middle-income countries, suicide numbers have remained largely unchanged or declined in the early months of the pandemic compared with the expected levels based on the pre-pandemic period. We need to remain vigilant and be poised to respond if the situation changes as the longer-term mental health and economic effects of the pandemic unfold. FUNDING: None.


Subject(s)
COVID-19/complications , Global Health , Models, Statistical , Suicide/statistics & numerical data , Developed Countries/statistics & numerical data , Humans
4.
BMJ ; 375: e066768, 2021 11 03.
Article in English | MEDLINE | ID: covidwho-1501690

ABSTRACT

OBJECTIVE: To estimate the changes in life expectancy and years of life lost in 2020 associated with the covid-19 pandemic. DESIGN: Time series analysis. SETTING: 37 upper-middle and high income countries or regions with reliable and complete mortality data. PARTICIPANTS: Annual all cause mortality data from the Human Mortality Database for 2005-20, harmonised and disaggregated by age and sex. MAIN OUTCOME MEASURES: Reduction in life expectancy was estimated as the difference between observed and expected life expectancy in 2020 using the Lee-Carter model. Excess years of life lost were estimated as the difference between the observed and expected years of life lost in 2020 using the World Health Organization standard life table. RESULTS: Reduction in life expectancy in men and women was observed in all the countries studied except New Zealand, Taiwan, and Norway, where there was a gain in life expectancy in 2020. No evidence was found of a change in life expectancy in Denmark, Iceland, and South Korea. The highest reduction in life expectancy was observed in Russia (men: -2.33, 95% confidence interval -2.50 to -2.17; women: -2.14, -2.25 to -2.03), the United States (men: -2.27, -2.39 to -2.15; women: -1.61, -1.70 to -1.51), Bulgaria (men: -1.96, -2.11 to -1.81; women: -1.37, -1.74 to -1.01), Lithuania (men: -1.83, -2.07 to -1.59; women: -1.21, -1.36 to -1.05), Chile (men: -1.64, -1.97 to -1.32; women: -0.88, -1.28 to -0.50), and Spain (men: -1.35, -1.53 to -1.18; women: -1.13, -1.37 to -0.90). Years of life lost in 2020 were higher than expected in all countries except Taiwan, New Zealand, Norway, Iceland, Denmark, and South Korea. In the remaining 31 countries, more than 222 million years of life were lost in 2020, which is 28.1 million (95% confidence interval 26.8m to 29.5m) years of life lost more than expected (17.3 million (16.8m to 17.8m) in men and 10.8 million (10.4m to 11.3m) in women). The highest excess years of life lost per 100 000 population were observed in Bulgaria (men: 7260, 95% confidence interval 6820 to 7710; women: 3730, 2740 to 4730), Russia (men: 7020, 6550 to 7480; women: 4760, 4530 to 4990), Lithuania (men: 5430, 4750 to 6070; women: 2640, 2310 to 2980), the US (men: 4350, 4170 to 4530; women: 2430, 2320 to 2550), Poland (men: 3830, 3540 to 4120; women: 1830, 1630 to 2040), and Hungary (men: 2770, 2490 to 3040; women: 1920, 1590 to 2240). The excess years of life lost were relatively low in people younger than 65 years, except in Russia, Bulgaria, Lithuania, and the US where the excess years of life lost was >2000 per 100 000. CONCLUSION: More than 28 million excess years of life were lost in 2020 in 31 countries, with a higher rate in men than women. Excess years of life lost associated with the covid-19 pandemic in 2020 were more than five times higher than those associated with the seasonal influenza epidemic in 2015.


Subject(s)
COVID-19/mortality , Developed Countries/statistics & numerical data , Global Health/trends , Life Expectancy/trends , Mortality, Premature/trends , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Databases, Factual , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Young Adult
5.
BMJ ; 373: n1137, 2021 05 19.
Article in English | MEDLINE | ID: covidwho-1273156

ABSTRACT

OBJECTIVE: To estimate the direct and indirect effects of the covid-19 pandemic on mortality in 2020 in 29 high income countries with reliable and complete age and sex disaggregated mortality data. DESIGN: Time series study of high income countries. SETTING: Austria, Belgium, Czech Republic, Denmark, England and Wales, Estonia, Finland, France, Germany, Greece, Hungary, Israel, Italy, Latvia, Lithuania, the Netherlands, New Zealand, Northern Ireland, Norway, Poland, Portugal, Scotland, Slovakia, Slovenia, South Korea, Spain, Sweden, Switzerland, and United States. PARTICIPANTS: Mortality data from the Short-term Mortality Fluctuations data series of the Human Mortality Database for 2016-20, harmonised and disaggregated by age and sex. INTERVENTIONS: Covid-19 pandemic and associated policy measures. MAIN OUTCOME MEASURES: Weekly excess deaths (observed deaths versus expected deaths predicted by model) in 2020, by sex and age (0-14, 15-64, 65-74, 75-84, and ≥85 years), estimated using an over-dispersed Poisson regression model that accounts for temporal trends and seasonal variability in mortality. RESULTS: An estimated 979 000 (95% confidence interval 954 000 to 1 001 000) excess deaths occurred in 2020 in the 29 high income countries analysed. All countries had excess deaths in 2020, except New Zealand, Norway, and Denmark. The five countries with the highest absolute number of excess deaths were the US (458 000, 454 000 to 461 000), Italy (89 100, 87 500 to 90 700), England and Wales (85 400, 83 900 to 86 800), Spain (84 100, 82 800 to 85 300), and Poland (60 100, 58 800 to 61 300). New Zealand had lower overall mortality than expected (-2500, -2900 to -2100). In many countries, the estimated number of excess deaths substantially exceeded the number of reported deaths from covid-19. The highest excess death rates (per 100 000) in men were in Lithuania (285, 259 to 311), Poland (191, 184 to 197), Spain (179, 174 to 184), Hungary (174, 161 to 188), and Italy (168, 163 to 173); the highest rates in women were in Lithuania (210, 185 to 234), Spain (180, 175 to 185), Hungary (169, 156 to 182), Slovenia (158, 132 to 184), and Belgium (151, 141 to 162). Little evidence was found of subsequent compensatory reductions following excess mortality. CONCLUSION: Approximately one million excess deaths occurred in 2020 in these 29 high income countries. Age standardised excess death rates were higher in men than women in almost all countries. Excess deaths substantially exceeded reported deaths from covid-19 in many countries, indicating that determining the full impact of the pandemic on mortality requires assessment of excess deaths. Many countries had lower deaths than expected in children <15 years. Sex inequality in mortality widened further in most countries in 2020.


Subject(s)
COVID-19/mortality , Developed Countries/statistics & numerical data , Mortality , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Child, Preschool , Europe/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Models, Statistical , Poisson Distribution , Republic of Korea/epidemiology , Sex Factors , United States/epidemiology , Young Adult
7.
Sci Rep ; 11(1): 2425, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1054054

ABSTRACT

Countries worldwide have adopted various strategies to minimize the socio-economic impact of the ongoing COVID-19 pandemic. Stringency of imposed measures universally reflects the standpoint from which protecting public health and avoiding damage to economy are seen as contradictory objectives. Based on epidemic trajectories of 25 highly developed countries and 10 US states in the (mobility reduction)-(reproduction number) plane we showed that delay in imposition of nation-wide quarantine elevates the number of infections and deaths, surge of which inevitably has to be suppressed by stringent and sustained lockdown. As a consequence, cumulative mobility reduction and population-normalized cumulative number of COVID-19-associated deaths are significantly correlated and this correlation increases with time. Overall, we demonstrated that, as long as epidemic suppression is the aim, the trade-off between the death toll and economic loss is illusory: high death toll correlates with deep and long-lasting lockdown causing a severe economic downturn.


Subject(s)
COVID-19/epidemiology , Quarantine/economics , COVID-19/economics , Communicable Disease Control/methods , Developed Countries/statistics & numerical data , Humans , Pandemics/economics , Pandemics/prevention & control , Public Health , Quarantine/statistics & numerical data , SARS-CoV-2/isolation & purification , United States/epidemiology
8.
Nature ; 589(7842): 415-419, 2021 01.
Article in English | MEDLINE | ID: covidwho-983667

ABSTRACT

The safe, highly effective measles vaccine has been recommended globally since 1974, yet in 2017 there were more than 17 million cases of measles and 83,400 deaths in children under 5 years old, and more than 99% of both occurred in low- and middle-income countries (LMICs)1-4. Globally comparable, annual, local estimates of routine first-dose measles-containing vaccine (MCV1) coverage are critical for understanding geographically precise immunity patterns, progress towards the targets of the Global Vaccine Action Plan (GVAP), and high-risk areas amid disruptions to vaccination programmes caused by coronavirus disease 2019 (COVID-19)5-8. Here we generated annual estimates of routine childhood MCV1 coverage at 5 × 5-km2 pixel and second administrative levels from 2000 to 2019 in 101 LMICs, quantified geographical inequality and assessed vaccination status by geographical remoteness. After widespread MCV1 gains from 2000 to 2010, coverage regressed in more than half of the districts between 2010 and 2019, leaving many LMICs far from the GVAP goal of 80% coverage in all districts by 2019. MCV1 coverage was lower in rural than in urban locations, although a larger proportion of unvaccinated children overall lived in urban locations; strategies to provide essential vaccination services should address both geographical contexts. These results provide a tool for decision-makers to strengthen routine MCV1 immunization programmes and provide equitable disease protection for all children.


Subject(s)
Developed Countries/statistics & numerical data , Geographic Mapping , Measles/epidemiology , Measles/prevention & control , Vaccination/statistics & numerical data , Child , Child, Preschool , Healthcare Disparities/statistics & numerical data , Humans , Internationality , Measles/immunology , Rural Health/statistics & numerical data , Uncertainty , Urban Health/statistics & numerical data , Vaccination Refusal/statistics & numerical data
9.
Nat Med ; 26(12): 1919-1928, 2020 12.
Article in English | MEDLINE | ID: covidwho-872715

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has changed many social, economic, environmental and healthcare determinants of health. We applied an ensemble of 16 Bayesian models to vital statistics data to estimate the all-cause mortality effect of the pandemic for 21 industrialized countries. From mid-February through May 2020, 206,000 (95% credible interval, 178,100-231,000) more people died in these countries than would have had the pandemic not occurred. The number of excess deaths, excess deaths per 100,000 people and relative increase in deaths were similar between men and women in most countries. England and Wales and Spain experienced the largest effect: ~100 excess deaths per 100,000 people, equivalent to a 37% (30-44%) relative increase in England and Wales and 38% (31-45%) in Spain. Bulgaria, New Zealand, Slovakia, Australia, Czechia, Hungary, Poland, Norway, Denmark and Finland experienced mortality changes that ranged from possible small declines to increases of 5% or less in either sex. The heterogeneous mortality effects of the COVID-19 pandemic reflect differences in how well countries have managed the pandemic and the resilience and preparedness of the health and social care system.


Subject(s)
COVID-19/mortality , Demography , Developed Countries/statistics & numerical data , Mortality , Pandemics , Population Dynamics , COVID-19/epidemiology , Cause of Death/trends , Female , Geography , Humans , Industrial Development/statistics & numerical data , Male , Mortality/trends , Population Density , Population Dynamics/statistics & numerical data , Population Dynamics/trends , Public Policy , SARS-CoV-2/physiology , Time Factors
11.
PLoS One ; 15(9): e0238217, 2020.
Article in English | MEDLINE | ID: covidwho-742538

ABSTRACT

BACKGROUND: Healthcare professionals (HCPs) on the front lines against COVID-19 may face increased workload and stress. Understanding HCPs' risk for burnout is critical to supporting HCPs and maintaining the quality of healthcare during the pandemic. METHODS: To assess exposure, perceptions, workload, and possible burnout of HCPs during the COVID-19 pandemic we conducted a cross-sectional survey. The main outcomes and measures were HCPs' self-assessment of burnout, indicated by a single item measure of emotional exhaustion, and other experiences and attitudes associated with working during the COVID-19 pandemic. FINDINGS: A total of 2,707 HCPs from 60 countries participated in this study. Fifty-one percent of HCPs reported burnout. Burnout was associated with work impacting household activities (RR = 1·57, 95% CI = 1·39-1·78, P<0·001), feeling pushed beyond training (RR = 1·32, 95% CI = 1·20-1·47, P<0·001), exposure to COVID-19 patients (RR = 1·18, 95% CI = 1·05-1·32, P = 0·005), and making life prioritizing decisions (RR = 1·16, 95% CI = 1·02-1·31, P = 0·03). Adequate personal protective equipment (PPE) was protective against burnout (RR = 0·88, 95% CI = 0·79-0·97, P = 0·01). Burnout was higher in high-income countries (HICs) compared to low- and middle-income countries (LMICs) (RR = 1·18; 95% CI = 1·02-1·36, P = 0·018). INTERPRETATION: Burnout is present at higher than previously reported rates among HCPs working during the COVID-19 pandemic and is related to high workload, job stress, and time pressure, and limited organizational support. Current and future burnout among HCPs could be mitigated by actions from healthcare institutions and other governmental and non-governmental stakeholders aimed at potentially modifiable factors, including providing additional training, organizational support, and support for family, PPE, and mental health resources.


Subject(s)
Burnout, Professional/epidemiology , Coronavirus Infections/psychology , Health Personnel/psychology , Pneumonia, Viral/psychology , Attitude , Burnout, Professional/psychology , COVID-19 , Developed Countries/statistics & numerical data , Developing Countries/statistics & numerical data , Emotions , Health Personnel/statistics & numerical data , Humans , Pandemics , Socioeconomic Factors , Surveys and Questionnaires
13.
Int J Environ Res Public Health ; 17(16)2020 08 10.
Article in English | MEDLINE | ID: covidwho-705146

ABSTRACT

The stability of food supply chains is crucial to the food security of people around the world. Since the beginning of 2020, this stability has been undergoing one of the most vigorous pressure tests ever due to the COVID-19 outbreak. From a mere health issue, the pandemic has turned into an economic threat to food security globally in the forms of lockdowns, economic decline, food trade restrictions, and rising food inflation. It is safe to assume that the novel health crisis has badly struck the least developed and developing economies, where people are particularly vulnerable to hunger and malnutrition. However, due to the recency of the COVID-19 problem, the impacts of macroeconomic fluctuations on food insecurity have remained scantily explored. In this study, the authors attempted to bridge this gap by revealing interactions between the food security status of people and the dynamics of COVID-19 cases, food trade, food inflation, and currency volatilities. The study was performed in the cases of 45 developing economies distributed to three groups by the level of income. The consecutive application of the autoregressive distributed lag method, Yamamoto's causality test, and variance decomposition analysis allowed the authors to find the food insecurity effects of COVID-19 to be more perceptible in upper-middle-income economies than in the least developed countries. In the latter, food security risks attributed to the emergence of the health crisis were mainly related to economic access to adequate food supply (food inflation), whereas in higher-income developing economies, availability-sided food security risks (food trade restrictions and currency depreciation) were more prevalent. The approach presented in this paper contributes to the establishment of a methodology framework that may equip decision-makers with up-to-date estimations of health crisis effects on economic parameters of food availability and access to staples in food-insecure communities.


Subject(s)
Coronavirus Infections/epidemiology , Developed Countries/statistics & numerical data , Developing Countries/statistics & numerical data , Food Supply/economics , Food Supply/statistics & numerical data , Pneumonia, Viral/epidemiology , Betacoronavirus , COVID-19 , Food/economics , Humans , Hunger , Income , Pandemics , Prevalence , SARS-CoV-2
15.
Diabetes Metab Syndr ; 14(5): 953-961, 2020.
Article in English | MEDLINE | ID: covidwho-621788

ABSTRACT

BACKGROUND AND AIMS: COVID-19 pandemic has affected various countries differently due to variance in demographics, income level, health infrastructure, government response, control and enforcement, and cultural traits of different populations. This study aims to identify significant factors behind the unequal distribution of identified cases and deaths in different countries. Our study's objective is comparative analysis and identification of relations between the spread of COVID-19 pandemic, population characteristics, and government response. METHODS: The top 18 countries worst hit by COVID-19 cases were identified. The data metrics, such as the number of cases, deaths, fatality rates, tests, average life expectancy, and population, were collected and consolidated. RESULTS: Countries with significant percentage of the older population are vulnerable to a high number of deaths due to COVID-19. Developed countries have higher per capita testing, whereas testing is less intensive in developing/underdeveloped countries. There is a consensus among health experts that COVID-19 has higher fatality rates for people above 60, however, with further age, this increases exponentially. Countries with higher life expectancy are also high-income countries, and the best course of action would be to provide specialized support to self-isolate for people of ages 75 and above. CONCLUSION: The behaviour of disease occurring at a large scale and interaction with different populations is studied to understand and differentiate the factors and measures that successfully inhibited the pandemic. The study benchmarks different countries based on their performance and efforts against the pandemic and provides some useful insights on the efficiency of their governance and potential to improve & ramp up their programs. The economic status and existing healthcare infrastructure as they are the key factors in determining the country's ability to contain and minimize the losses from this pandemic.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Developed Countries/statistics & numerical data , Developing Countries/statistics & numerical data , Global Health/statistics & numerical data , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , COVID-19 , COVID-19 Testing , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Socioeconomic Factors , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL